If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2+18t+6=0
a = 9; b = 18; c = +6;
Δ = b2-4ac
Δ = 182-4·9·6
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{3}}{2*9}=\frac{-18-6\sqrt{3}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{3}}{2*9}=\frac{-18+6\sqrt{3}}{18} $
| 4x+6x+6=2(x+5) | | 85x+165=-15x-35 | | 7x-1+3(x+1)=2x-4 | | 5(-3+m)=20 | | 43+12x=-2x+65 | | 5(x-2)-3x+7=-17 | | C=12c-5 | | 7x-20-3x=12 | | h^2+5h-24=0 | | -8x+7x=45 | | -88-32x=12x-176 | | 4^x×3^2x=6 | | 7x(4x-3)=2x-5 | | 20m-2=3 | | 3=x/x-x | | 780=50x+9.75 | | 2m-3=20 | | $780=50x+$9.75 | | 20m-3=2 | | 3m-20=2 | | -4(v+1)=4v-3+5(2v+1) | | –7=b2− 8 | | 11+w=18 | | Y=(7x+2)+6 | | 3m-24=129 | | 6(4n+4)=8(3+3n | | 24m+3=129 | | 0.20x+120=1x | | 18=-3/5w | | 1.8x-6.3=0.3(2x-1) | | 4m-27=35 | | (4x+12)=38 |